Synthesis and characterisation of 1-alkyl-2-imidazoline complexes of noble metals; crystal structure of *trans***-** $[$ **PtCl**₂ $\{$ **N**=**C**(**H)N(Et)CH**₂**CH**₂ $\}$ **(PEt**₃)]

Bekir Çetinkaya,*^a* **Engin Çetinkaya,***^a* **Peter B. Hitchcock,***^b* **Michael F. Lappert** *^b* **and Ismail Özdemir** *^a*

^a Department of Chemistry, Inönü University, 44280-Malaya, Türkiye

^b The Chemistry Laboratory, University of Sussex, Brighton BN1 9QJ, UK

DALTON

Treatment of a 1-alkyl-2-imidazoline $N(R)(CH_2)_2N=CH$ with a μ -dichloro-dirhodium(i) or -diplatinum(ii) complex [{Rh(µ-Cl)(cod)}**2**] or [{Pt(µ-Cl)Cl(PEt**3**)}**2**] gave the mononuclear 1-alkyl-2-imidazoline complex [RhCl{N]]C(H)N(R)CH**2**CH**2**}(cod)] (R = Et **1a** or CH**2**Ph **1b**) or *trans*-[PtCl**2**{N]]C(H)N(R)CH**2**CH**2**}(PEt**3**)] (R = Et **2a** or CH**2**Ph **2b**) (cod = cycloocta-1,5-diene). A single-crystal X-ray diffraction study of **2a** revealed it to have a square-planar geometry about platinum, the imidazoline ring being coplanar with this plane, and a Pt-N distance of 2.088(11) Å; the Pt-P bond length of 2.231(4) Å indicates that the imidazoline ligand has a marginally

stronger *trans* influence than analogues of its isomer such as CN(R)(CH**2**)**2**NR. The rhodium complexes **1a** and **1b** have been shown to catalyse cyclopropanation of styrene and ethyl diazoacetate in high yields.

The co-ordination chemistry of imidazole and related compounds, including benzimidazoles, benzoxazoles and benzthiazoles, has been extensively studied in part because of their role in aspects of catalysis and biomimetics.**1,2** Since some of these heterocycles are corrosion inhibitors, their metal complexes may also have some relevance to anticorrosion mechanisms.**³** In addition, some have a variety of pharmacological effects, such as antitumour activity; for instance bis(acetato)bis(imidazole) $copper(n)$ ^{4,5} and imidazolium tetrachlorobis(imidazole)ruthen- ate(m) ⁶ were reported to be highly active antagonists toward tumour models. The presence of planar nitrogen-centred ligands L in $trans$ ^{[PtCl₂L₂] often appeared to enhance their cyto-} toxity relative to the corresponding *cis* isomer or to *cis*-[PtCl₂- $(NH_3)_2$ ⁷

Imidazole and its derivatives are bound through $N³$ of the imidazole ring.**8,9** However, conversion of an imidazolemetal complex into the isomeric (imidazolium ylide)metal complex, having a C²–M bond, has been described.¹⁰ In contrast, results on the related chemistry of 1-alkyl-4,5-dihydroimidazoles, the *N*-(or 1-)alkyl-2-imidazolines, are as yet much more sparse. At the outset of this work the only previous studies had been concerned with the bidentate imidazoline complexes of some late first-row transition metals.**11,12** Recently, the reaction of 2 phenylimidazoline with some palladium (n) complexes yielding cyclometallated products was described.**¹³**

In 1977 we reported that an attempt at an *in situ* synthesis of an NH-substituted imidazolidin-2-ylidene(or carbene)molybdenum(0) complex **I**, containing an $Mo\{CN(R)(CH_2)_2NH\}$ moiety, from $[Mo(CO)_{6}]$, $CH(OMe)_{2}NMe_{2}$ and $H_{2}N(CH_{2})_{2}$ -NHR led instead to the isomeric *N*-bonded 2-imidazolinemolybdenum(0) complexes **II**; **¹⁴** the latter were also accessible from $[Mo(CO)_6]$ and $N(R)(CH_2)_2N=CH$ (R = H or Et) as was $[RhCl(N=C(H)N(R)CH₂CH₂)(cod)]$ from $[\{Rh(\mu-Cl)(cod)\}_{2}]$ and $\overline{N(R)}(CH_2)_2N=CH$ (cod = cycloocta-1,5-diene). The present paper reports an extension of these experiments.

A further reason for our pursuing the present study is that the imidazoline complexes $[RhCl(N=C(H)N(R)CH₂CH₂)(cod)]$ $(R = Et 1a$ or $CH_2Ph 1b)$ showed significant selective anti-

bacterial activity**¹⁵** and were effective catalysts for cyclisation of (*Z*)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran.**¹⁶**

In this paper we describe the synthesis, isolation and spectroscopic characterisation of four new 1-alkyl-2-imidazoline complexes of rhodium(i) $(1a \text{ and } 1b)$ and platinum(ii) $(2a \text{ and } 2b)$ derived from the imidazoline $N(R)(CH_2)_2N=CH$ (R = Et or CH₂Ph) and the molecular structure of *trans*molecular $[PtCl₂{\rm N}=C(H)N(Et)CH₂CH₂$ $[PEt₃)]$ **2a**, which we believe provides the first such data on a 1-alkyl-2-imidazolineplatinum (n) complex. The complexes **1a** and **1b** were shown to be effective catalysts for a cyclopropanation reaction.

Results and Discussion

An enetetramine $[\equiv CN(R)(CH_2)_2NR]_2$ (abbreviated as L^R_{2}) has been shown to behave as a C-centred nucleophile in readily cleaving a di- μ -dichloro-dimetal complex such as $[\{Rh(\mu - \mu)\}]$ $Cl(Cod)$ ₂] **A** or $[\{Pt(\mu-C)Cl(PEt_3)\}_2]$ **B** to give the imidazolidin-2-ylidene(or carbene)metal complex [RhCl(cod)(L^R)] or [PtCl₂- $(L^R)(PEt_3)$ ¹⁷ A similar approach was used in the present study. Thus, 2 equivalents of the imidazoline $N(R)(CH_2)_2N=CH$ $(R = Et \text{ or } CH_2Ph)$ were heated with **A** or **B** affording the appropriate mononuclear 1-alkyl-2-imidazoline-rhodium() **1** or -platinum() **2** complex in good yield (Table 1), Scheme 1 [(*i*) or (*ii*)].

Each of the complexes **1a**, **1b**, **2a** and **2b** was obtained in moderate to high yield as air-stable crystals, which were characterised by elemental analysis and IR (Table 1), **¹** H NMR (Table 2) and **¹³**C-{**¹** H} NMR (Table 3) spectra; the tables also include corresponding data on the imidazolines $N(R)(CH_2)_2N=CH$ $[R = Et$ (an oil at ambient temperature) or $CH₂Ph$] which were reported briefly.**¹⁸**

^{*} *Non-SI unit employed*: mmHg ≈ 133 Pa.

The IR spectra of each of the four complexes showed an intense absorption band at $1605 \pm 12 \text{ cm}^{-1}$ assigned to $v(C=N)$ which decreased in frequency relative to the free imidazolines in the case of **1a** and **1b**, while for **2a** and **3b** the opposite was the case, which may be because the ligand in the last two complexes is *trans* to a tertiary phosphine rather than an alkene, as in **1a** or **1b**.

Scheme 1 Routes to 1-alkyl-2-imidazoline complexes **1** and **2**: (*i*) $[\{Rh(\mu\text{-}Cl)(cod)\}_2]$ (0.5 equivalent), toluene, 110[°]C, 2 h; (*ii*) $[\{Pt(\mu\text{-}Cl)(cod)\}_2]$ $Cl)Cl(PEt₃)$ ₂] (0.5 equivalent), toluene, 110 °C, 2 h

The **¹** H NMR spectral chemical shifts of the metal-bound imidazolines in complexes **1b** and **2b** were found at higher frequency than in the free imidazoline, but the effect was least obvious for the CH**2** protons and was not as marked as in the related imidazole complexes,**¹⁹** perhaps due to the aromaticity of the imidazole ligands. The variations in the **13**C NMR chemical shifts as between **1b** and **2b** on the one hand, and the free imidazoline on the other, were less pronounced.

The **¹³**C-{**¹** H} NMR spectra were particularly diagnostic as to the nature of the bonding in these new complexes, establishing them to be N^3 -bound 2-imidazolines rather than C^2 bound imidazolidin-2-ylidenes. Thus, the imino N=CH signal was observed as a singlet at δ 161.3 for [RhCl- ${\rm N=}\mathrm{C(H)}\mathrm{N}(\mathrm{CH}_2\mathrm{Ph})\mathrm{CH}_2\mathrm{CH}_2{\rm C(H}_2)$ (cod)] **1b**, but a doublet centred at δ 158.4 for *trans*-[PtCl₂{N=C(H)N(CH₂Ph)CH₂CH₂}(PEt₃)] **2b**, $J(^{13}C^{-31}P) = 2$ Hz. By contrast, in Rh^I–L^R or Pt^{II}–L^R complexes, the carbene carbon atom showed a large ¹³C⁻¹⁰³Rh or ¹³C⁻¹⁹⁵Pt coupling constant, $e.g.$ $\frac{1}{1}$ $J($ ¹³C $-$ ¹⁰³Rh) in the range 38–65 Hz.²⁰

The **³¹**P-{**¹** H} NMR spectra of complexes **2a** and **2b** showed singlets at δ 1.12 and 0.71 with **¹⁹⁵**Pt satellites, 1 *J*(⁽³¹P⁻¹⁹⁵Pt) = 3345 and 3314.1 Hz, respectively.

^a As KBr discs. *^b* Calculated values in parentheses.

Table 2 Proton NMR chemical shifts (δ) and coupling constants (*J*/Hz)

	Ring		
Compound	C^2H	4.5-CH_2	Others
$N(Et)$ (CH ₂) ₂ $N=CH$	6.76(s)	2.85 (m), 3.66 (m)	0.96 (t, $J = 7.0$, CH ₂ CH ₃), 2.85 (q, $J = 6.0$, CH ₂ CH ₃)
$N(CH, Ph)(CH_2), N=CH$	6.70(s)	2.70 (m), 3.70 (m)	3.67 (s, $CH_2C_6H_5$), 7.1 (m, $CH_2C_6H_5$)
1a	7.61 (s)	3.30 (t, $J = 11.4$), 3.47 (t. $J = 11.4$)	1.1 (t, $J = 7.25$, CH ₂ CH ₃), 1.69 (d, $J = 4.9$), 2.23 (d, $J = 7.4$, cod CH ₂), 3.14 (q, $J = 7.25$, CH_2CH_3), 3.79 (s) and 4.37 (s) (cod C=H)
1b	7.83(s)	3.20 (t, $J = 10.7$), 3.51 (t. $J = 10.7$)	1.73 (d, $J=8.6$), 2.39 (d, $J=4.9$, cod CH ₂), 3.82 (s) and 4.44 (s) (cod C=H), 4.29 (s, $CH_2C_6H_5$), 7.30 (m, $CH_2C_6H_5$)
2a	7.56 (s)	3.3 (t, $J=10.0$), 4.0 (t. $J = 10.0$)	1.0 (t, J = 7.0, CH ₂ CH ₃ , 1.19 (t, J = 7.6, PCH ₂ CH ₃), 1.80 (q, J = 7.6, PCH_2CH_3 , 3.2 (q, J = 7.0, CH ₂ CH ₃)
2 _b	7.78(s)	3.3 (t, $J = 10.4$), 4.07 (t. $J = 10.4$)	1.20 (t, $J=7.6$, PCH ₂ CH ₂), 1.80 (g, $J=7.6$, PCH ₂ CH ₃), 4.33 (s, $CH_2C_6H_5$, 7.32 (m, $CH_2C_6H_5$)

Table 3 ¹³C-{¹H} NMR chemical shifts (δ) and coupling constants (J /Hz)

Fig. 1 Structure of *trans*-[PtCl₂{N=C(H)N(Et)CH₂CH₂}(PEt₃)] **2a**

Table 4 Selected bond lengths (Å) and angles (°) with estimated standard deviations in parentheses for *trans*-[PtCl₂standard deviations in parentheses for *trans*-[PtCl₂-{N]]C(H)N(Et)CH**2**CH**2**}(PEt**3**)] **2a**

$Pt-Cl(1)$	2.283(4)	$Pt-Cl(2)$	2.291(5)
$Pt-P$	2.231(4)	$Pt-N(1)$	2.088(11)
$P-C(6)$	1.82(2)	$P-C(8)$	1.85(2)
$P - C(10)$	1.83(2)	$N(1) - C(1)$	1.29(2)
$N(1) - C(3)$	1.57(2)	$N(2)-C(1)$	1.33(2)
$N(2) - C(2)$	1.48(2)	$N(2)-C(4)$	1.41(2)
$C(2) - N(3)$	1.51(3)	$C(4)-C(5)$	1.52(2)
$C(6)-C(7)$	1.53(3)	$C(8)-C(9)$	1.56(2)
$C(10)-C(11)$	1.52(3)		
$Cl(1)-Pt-Cl(2)$	178.6(2)	$Cl(1)-Pt-P$	88.7(2)
$Cl(1) - Pt - N(1)$	88.6(3)	$Cl(2)-Pt-P$	92.5(2)
$Cl(2)-Pt-N(1)$	90.2(3)	$P-Pt-N(1)$	177.0(3)
$Pt-P-C(6)$	116.1(5)	$Pt-P-C(8)$	114.1(5)
$Pt-P-C(10)$	110.7(5)	$C(6)-P-C(8)$	105.3(7)
$C(6)-P-C(10)$	106.6(8)	$C(8)-P-C(10)$	102.9(7)
$Pt-N(1)-C(1)$	128.1(9)	$Pt-N(1)-C(3)$	124.8(9)
$C(1)-N(1)-C(3)$	107(1)	$C(1)-N(2)-C(2)$	109(1)
$C(1)-N(2)-C(4)$	125(1)	$C(2)-N(2)-C(4)$	124(1)
$N(1)-C(1)-N(2)$	116(1)	$N(2)-C(2)-C(3)$	104(1)
$N(1)$ –C(3)–C(2)	103(1)	$N(2)$ –C(4)–C(5)	116(1)
$P - C(6) - C(7)$	116(1)	$P - C(8) - C(9)$	111(1)
$P-C(10)-C(11)$	112(1)		

Single crystals of complex **2a** were grown from $CH_2Cl_2-Et_2O$ at ambient temperature. The molecular structure is shown in Fig. 1 and selected bond lengths and angles are given in Table 4. The platinum is in a square-planar environment, with the chlorides *trans* to one another. The Pt-Cl [average 2.287(4) Å] and Pt–P $[2.231(4)$ Å] bond lengths may be compared with those in *trans*-[PtCl₂(L^{Ph})(PEt₃)] **III** $[L^{Ph} = C\overline{N(Ph)(CH_2)_2}NPh]$; Pt-Cl 2.301(6) (average) and Pt–P 2.291(4) Å].²¹ Hence it appears that the *trans* influence of the 1-ethyl-2-imidazoline ligand in **2a** is slightly greater than that of the carbene (or imidazolidin-2 ylidene) ligand L**Ph** in **III**.

For the cyclopropanation of alkanes with diazo compounds various efficient transition-metal catalysts have been reported. Although those available have proved useful in many instances, the search for alternatives goes on. Recently, bis(2-oxazolin-2 yl)(pyridine)ruthenium(II) complexes have been introduced as efficient cyclopropanation catalysts, which give good *trans–cis* selectivities.²² Hence, we have checked the new rhodium(I) compounds **1a** and **1b** in the same context (Scheme 2).With 0.9 mol $\%$ catalyst at 80 $^{\circ}\textrm{C}$ styrene gave an excellent yield (91–95%) of the cyclopropanation product with ethyl diazoacetate. The mechanistic details of this catalytic reaction are currently under investigation.

Experimental

Unless otherwise stated, manipulations were carried out under argon using a high-vacuum manifold and conventional Schlenk techniques. Solvents were distilled over appropriate drying agents and thoroughly degassed prior to use. The complexes $\left[\{\text{Rh}(\mu\text{-Cl})(\text{cod})\}_2\right]^{23}$ and $\left[\{\text{Pt}(\mu\text{-Cl})\text{Cl}(\text{PEt}_3)\}_2\right]^{24}$ were

prepared by published methods. The 1-alkyl-2-imidazolines $N(R)(CH_2), N=CH$ ($R=Et$ or CH_2Ph) were readily prepared from $CH(OMe)₂NMe₂$ and the appropriate diamine $H₂N {\rm (CH_2)_2NHR.^{18}}$

The IR spectra were recorded as samples in KBr discs or as Nujol mulls on a Unicam 2100 grating spectrophotometer, NMR spectra, for samples in CDCl**3** solution, on a Bruker WM 360 or AC-250SY instrument. Elemental analyses were obtained in the Middle East Technical University, Ankara.

Preparations

1-Ethyl-2-imidazoline. A solution of *N*-ethylethane-1,2 diamine (12.55 g, 124 mmol) and $CH(OMe)₂NMe₂$ (19.06 g, 160 mmol) was slowly heated. When the oil-bath temperature reached 75-80 °C, NMe₂H and MeOH began to distil off. The brown residue was distilled at 34-36 °C (0.4 mmHg) to obtain a colourless liquid.

1-Benzyl-2-imidazoline. A solution of *N*-benzylethane-1,2 diamine (2.0 g, 13.3 mmol) in cyclohexane (4 cm**³**) was added to CH(OMe)**2**NMe**2** (1.29 g, 15 mmol) and the mixture was heated under distillation conditions, allowing the produced NMe₂H and MeOH to distil off. Then volatiles were removed under vacuum. The residue (1.79 g) was crystallised from toluene (1.5 cm**³**)–hexane (6 cm**³**).

(1-Alkyl-2-imidazoline)chloro(cycloocta-1,5-diene)rhodium(I) 1a and 1b. A solution of 1-ethyl-2-imidazoline (0.16 g, 1.6 mmol) in toluene (15 cm**³**) and [{Rh(µ-Cl)(cod)}**2**] (0.40 g, 0.80 mmol) was heated for 2 h under reflux. Hexane (5 cm**³**) was added to the warm solution. Upon cooling to room temperature yellow-orange crystals of complex 1a (0.47 g) were filtered off, washed with cold hexane $(2 \times 5 \text{ cm}^3)$ and dried in a vacuum.

Similarly, from the same rhodium (i) starting material $(0.60 g,$ 1.21 mmol) and 1-benzyl-2-imidazoline (0.38 g, 2.43 mmol), orange crystals of complex **1b** (0.89 g) were obtained.

```
trans-(1-Alkyl-2-imidazoline)dichloro(triethylphosphine)plat-
```
inum(II) 2a and 2b. A solution of 1-ethyl-2-imidazoline (0.14 g, 1.43 mmol) in toluene (10 cm³) was added to $[{Pt(\mu-Cl)} Cl(PEt₃)$ ₂] (0.56 g, 0.73 mmol) and the mixture was heated for 2 h under reflux. Upon addition of hexane (6 cm**³**) to the resulting yellow solution and cooling to room temperature, yellow crystals of complex **2a** (0.48 g) were filtered off, washed with hexane $(2 \times 10 \text{ cm}^3)$ and dried under vacuum.

Yellow microcrystals of compound **2b** (0.56 g) were obtained similarly from 1-benzyl-2-imidazoline (0.20 g, 1.25 mmol) and the same platinum(π) starting material (0.50 g, 0.65 mmol).

Cyclopropanation reactions

In a typical experiment, the catalyst **1** (0.009 mmol) and styrene (20 mmol, 2.3 cm**³**) were introduced into a Schlenk tube and then ethyl diazoacetate (1 mmol) in styrene (1 cm**³**) was added. The mixture was stirred in an oil-bath at 80 $^{\circ}$ C for 4 h. The yields and the ratio of isomers were determined by GC.

Crystallography

Crystal data. $C_{11}H_{25}Cl_2N_2PPt$, $M = 482.3$, tetragonal, space group *I*4 (no. 82), $a = b = 20.997(2)$, $c = 7.549(1)$ Å, $U = 3327.9$ \AA^3 , *Z* = 8, *D*_c = 1.93 g cm⁻³, *F*(000) = 1856, μ (Mo-K α) = 89.2 cm²**¹** , 293 K.

Data collection, structure solution and refinement. X-Ray diffraction data were collected on a crystal of dimensions $0.3 \times 0.2 \times 0.2$ mm, in a Lindemann capillary sealed under argon, on an Enraf-Nonius CAD4 diffractometer in the θ–2θ mode with a scan width of $\Delta\theta = (0.8 + 0.35 \tan \theta)^\circ$, maximum scan time of 1 min and Mo-K α radiation ($\lambda = 0.71069$ Å). A total of 1112 unique reflections was measured for $2 < \theta < 22^{\circ}$ and $+h$ + k + k, 1010 reflections with $|F^2| > 3\sigma(F^2)$, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]/L_p$, were used in the refinement. There was no crystal decay during the data collection. A correction (maximum 1.22, minimum 0.85) for absorption was applied using DIFABS**²⁵** after isotropic refinement.

The structure was solved using the heavy-atom routines of SHELX 86 **²⁶** and non-hydrogen atoms were refined on *F* with anisotropic thermal parameters by full-matrix least squares. Hydrogen atoms were held at calculated positions with $U_{\text{iso}} = 1.3 U_{\text{eq}}$ for the parent atom. Final parameters were $R = 0.026$, $\hat{R}' = 0.033$, $S = 1.26$, 154 variables, $w = 1/\sigma^2(F)$, $(\Delta/\sigma)_{\text{max}} = 0.01$ and $(\Delta \rho)_{\text{max,min}} + 0.57$, -0.65 e Å⁻³ on a final difference map. Programs from the SDP-PLUS package**²⁷** were run on a Micro Vax II computer.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc*., *Dalton Trans*., 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/428.

Acknowledgements

We thank Professor P. H. Dixneuf for helpful discussions, the Leverhulme Trustees for an Emeritus Fellowship (for M. F. L.) and the EPSRC for support.

References

- 1 A. L. Abuhijleh, *Polyhedron*, 1996, **15**, 285.
- 2 K. Nonoyama, W. Mori and M. Nonoyama, *Polyhedron*, 1994, **13**, 891; S. Bennett, S. M. Brown, G. Conole, M. Kessler, S. Rowling, E. Sinn and S. Woodward, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 367.
- 3 G. Xue, Q. Dai and S. Jiang, *J. Am. Chem. Soc*., 1988, **110**, 2393; G. Xue, S. Jiang, X. Huang, G. Shi and B. Sun, *J. Chem. Soc.*, *Dalton Trans.*, 1988, 1487.
- 4 J. R. J. Sorrenson, *Prog. Med. Chem*., 1989, **26**, 437.
- 5 H. Tamura, H. Imai, J. Kuwahara and Y. Sugiura, *J. Am. Chem. Soc*., 1987, **109**, 6870.
- 6 A. Galeano, M. R. Berger and B. K. Keppler, *Arzneim.-Forsch.*, *Drug Res*., 1992, **42**, 821.
- 7 M. van Beusichem and N. Farrell, *Inorg. Chem*., 1992, **31**, 634.
- 8 R. J. Sundberg, R. F. Bryan, I. F. Taylor and H. Taube, *J. Am. Chem. Soc*., 1974, **96**, 381.
- 9 J. Müller and R. Stock, *Angew. Chem*., *Int. Ed. Engl*., 1983, **22**, 993.
- 10 F. Bonati, L. A. Oro, M. T. Pinillos and C. Tejel, *J. Organomet. Chem*., 1994, **465**, 267.
- 11 S. S. Tandon, L. K. Thompson, J. N. Bridson and J. C. Dewan, *Inorg. Chem*., 1994, **33**, 54 and refs. therein.
- 12 J. Bremer, S. Uhlenbrock, A. A. Pinkerton and B. Krebs, *Z. Anorg. Allg. Chem*., 1993, **619**, 1183.
- 13 C. Navarro-Ranninger, F. Zamora, I. López-Solera, A. Monge and J. R. Masaguer, *J. Organomet. Chem*., 1996, **506**, 149.
- 14 P. B. Hitchcock, M. F. Lappert and P. L. Pye, *J. Chem. Soc*., *Dalton Trans*., 1977, 2160.
- 15 B. Çetinkaya, E. Çetinkaya, H. Küçükbay and R. Durmaz, *Arzneim.-Forsch*., *Drug Res*., 1996, **46**, 821.
- 16 B. Çetinkaya, I. Özdemir, C. Bruneau and P. H. Dixneuf, unpublished work.
- 17 M. F. Lappert, *J. Organomet. Chem*., 1988, **358**, 185.
- 18 E. Çetinkaya and M. F. Lappert, *Chemistry and Chemical Engineering Symposium, Abstracts, Kusadasý*, 1989, p. 140.
- 19 F. Bonati, L. A. Oro, M. T. Pinillos, C. Tejel, M. C. Apreda, C. Foces-Foces and F. H. Cano, *J. Organomet. Chem*., 1989, **369**, 253.
- 20 B. Çetinkaya, P. B. Hitchcock, M. F. Lappert, D. B. Shaw, K. Spyropoulos and N. J. W. Warhurst, *J. Organomet. Chem*., 1993, **459**, 311.
- 21 L. Manojlovic´-Muir and K. W. Muir, *J. Chem. Soc*., *Dalton Trans*., 1974, 2427.
- 22 S.-B. Park, N. Sakata and H. Nishiyama, *Chem. Eur. J*., 1996, **3**, 303; H. Nishiyama, Y. Itoh, Y. Sugawara, H. Matsumoto, K. Aoki and K. Itoh, *Bull. Chem. Soc. Jpn*., 1995, **68**, 1247.
- 23 J. Chatt and L. M. Venanzi, *J. Chem. Soc*., 1957, 4735.
- 24 J. Chatt and L. M. Venanzi, *J. Chem. Soc*., 1957, 2351.
- 25 N. Walker and D. Stuart, *Acta Crystallogr*., *Sect. A*., 1983, **39**, 158. 26 G. M. Sheldrick, SHELXS 86, Program for the Solution of Crystal
- Structure Refinement, University of Göttingen, 1986.
- 27 SDP-PLUS, Enraf-Nonius, Delft, 1978.

Received 12*th December* 1996; *Paper* 6/08360I